
Django Delayed Union
Release 0.1.5

Apr 13, 2020

Contents

1 Overview 1
1.1 Installation . 2
1.2 Documentation . 2
1.3 Development . 2

2 Installation 3

3 Usage 5
3.1 Custom QuerySet methods . 6

4 Reference 7
4.1 django_delayed_union . 7

5 Contributing 13
5.1 Bug reports . 13
5.2 Documentation improvements . 13
5.3 Feature requests and feedback . 13
5.4 Development . 14

6 Authors 15

7 Changelog 17
7.1 0.1.4 (2019-10-19) . 17
7.2 0.1.3 (2019-04-24) . 17
7.3 0.1.2 (2018-12-14) . 17
7.4 0.1.1 (2018-07-16) . 17
7.5 0.1.0 (2018-03-14) . 17

8 Indices and tables 19

Python Module Index 21

Index 23

i

ii

CHAPTER 1

Overview

docs
tests

package

django-delayed-union is library designed to workaround some drawbacks with Django’s union, intersection,
and difference operations. In particular, once one of these operations is performed, certain methods on the queryset
will silently not work:

>>> qs = User.objects.filter(id=1)
>>> unioned_qs = qs.union(qs)
>>> should_be_empty_qs = unioned_qs.exclude(id=1)
>>> user, = list(should_be_empty_qs); user.id
1

In order to work around this, django-delayed-union provides wrappers around a collection of querysets. These
wrappers implement a similar interface to QuerySet, and delay performing the union, intersection, or difference
operations until they are needed:

>>> from django_delayed_union import DelayedUnionQuerySet
>>> qs = User.objects.filter(id=1)
>>> unioned_qs = DelayedUnionQuerySet(qs, qs)
>>> empty_qs = unioned_qs.exclude(id=1)
>>> list(empty_qs)
[]

1

https://readthedocs.org/projects/django-delayed-union
https://travis-ci.org/roverdotcom/django-delayed-union
https://codecov.io/github/roverdotcom/django-delayed-union
https://pypi.python.org/pypi/django-delayed-union
https://pypi.python.org/pypi/django-delayed-union
https://pypi.python.org/pypi/django-delayed-union
https://pypi.python.org/pypi/django-delayed-union
https://github.com/roverdotcom/django-delayed-union/compare/v0.1.5...master

Django Delayed Union, Release 0.1.5

Operations which would typically return a new QuerySet instead return a new DelayedQuerySet with the
operation applied to its collection of querysets.

One example of where this code has been useful with is when the the MySQL query planner has chosen an in-
efficient query plan for the queryset of a Django REST Framework view which used an OR condition. By using
DelayedUnionQuerySet, subclasses could perform additional filters on the queryset while still maintaining the
efficient query plan.

• Free software: BSD 3-Clause License

1.1 Installation

pip install django-delayed-union

1.2 Documentation

https://django-delayed-union.readthedocs.io/

1.3 Development

To run the all tests run:

tox

2 Chapter 1. Overview

https://github.com/foo/
https://django-delayed-union.readthedocs.io/

CHAPTER 2

Installation

At the command line:

pip install django-delayed-union

3

Django Delayed Union, Release 0.1.5

4 Chapter 2. Installation

CHAPTER 3

Usage

To use Django Delayed Union in a project, import the wrapper corresponding to the operation needed:

from django_delayed_union import DelayedUnionQuerySet
from django_delayed_union import DelayedIntersectionQuerySet
from django_delayed_union import DelayedDifferenceQuerySet

Then, you use them where you would use Django’s union, intersection, and difference methods:

>>> qs0.union(qs1, qs2)
>>> DelayedUnionQuerySet(qs0, qs1, qs2)

>>> qs0.union(qs1, qs2, all=True)
>>> DelayedUnionQuerySet(qs0, qs1, qs2, all=True)

>>> qs0.intersection(qs1)
>>> DelayedIntersectionQuerySet(qs0, qs1)

>>> qs0.difference(qs1)
>>> DelayedDifferenceQuerySet(qs0, qs1)

These wrappers implement the same public interface as Django’s QuerySet so they should be able to be used by
code which expects a QuerySet.

Note: DelayedQuerySet does not subclass QuerySet so any code which checks for whether or not an object is
an instance of QuerySet will not work with these wrappers.

Note: If certain methods are unimplemented or will not work, they will raise a NotImplementedError as
opposed to silently not working.

5

Django Delayed Union, Release 0.1.5

3.1 Custom QuerySet methods

Currently, the wrappers do not handle any custom methods that may have been added to the component querysets.
For example, if qs0 and qs1 were instances of a subclass of QuerySet that had an active() method, then the
following would not work:

>>> DelayedUnionQuerySet(q0, qs1).active()
Traceback (most recent call last)
...

AttributeError

Where this functionality is needed, it is straightforward to make a subclass of DelayedUnionQuerySet using
which has this behavior:

from django_delayed_union.base import PassthroughMethod

class MyDelayedUnionQuerySet(DelayedUnionQuerySet):
active = PassthroughMethod()

>>> MyDelayedUnionQuerySet(qs0, qs1).active()

Check out the other subclasses of django_delayed_union.base.DelayedQuerySetDescriptor if you
need the resulting method to behave differently than PassthroughMethod.

6 Chapter 3. Usage

CHAPTER 4

Reference

4.1 django_delayed_union

class django_delayed_union.base.DelayedQuerySet(*querysets, **kwargs)
A class used to work around some of the issues with Django’s built-in support for set operations with querysets
(such as UNION). The primary issue is that after `.union() call is made any subsequent filtering will silently
fail. This class works around that issue by maintaing all of the individual querysets and not applying an operation
like .union() until it’s needed.

For example, suppose we have qs = DelayedUnionQuerySet(qs0, qs1)`, then running
qs = qs.filter(id=42) will be equivalent to doing qs = DelayedUnionQuerySet(qs0.
filter(id=42), qs1.filter(id=42)). Then, when we actually need to evaluate the queryset say
by doing obj = qs.first(), it will return qs0.union(qs1).first() behind the scenes.

Subclasses need to implement the _apply_operation(), which performs the operation such as .union()
that is being delayed.

aggregate(*args, **kwargs)
Raises NotImplementedError. Documentation for aggregate:

Returns a dictionary containing the calculations (aggregation) over the current queryset

If args is present the expression is passed as a kwarg using the Aggregate object’s default alias.

all
Returns the a new delayed queryset with all(...) having been called on each of the component query-
sets.: Documentation for all:

Returns a new QuerySet that is a copy of the current one. This allows a QuerySet to proxy for a model
manager in some cases.

annotate(*args, **kwargs)
Returns the a new delayed queryset with annotate(...) having been called on each of the component
querysets.: Documentation for annotate:

Return a query set in which the returned objects have been annotated with extra data or aggregations.

7

Django Delayed Union, Release 0.1.5

as_manager(cls)
Returns the a new delayed queryset with as_manager(...) having been called on the first component
queryset, while the rest remain unchanged.

bulk_create(objs, batch_size=None)
Returns the result of calling bulk_create(...) on the first component queryset. Documentation for
bulk_create:

Inserts each of the instances into the database. This does not call save() on each of the instances, does
not send any pre/post save signals, and does not set the primary key attribute if it is an autoincrement field
(except if features.can_return_ids_from_bulk_insert=True). Multi-table models are not supported.

complex_filter(filter_obj)
Returns the a new delayed queryset with complex_filter(...) having been called on each of the
component querysets.: Documentation for complex_filter:

Returns a new QuerySet instance with filter_obj added to the filters.

filter_obj can be a Q object (or anything with an add_to_query() method) or a dictionary of keyword lookup
arguments.

This exists to support framework features such as ‘limit_choices_to’, and usually it will be more natural to
use other methods.

count
Returns the output of count(...) after having applied the delayed operation. Documentation for count:

Performs a SELECT COUNT() and returns the number of records as an integer.

If the QuerySet is already fully cached this simply returns the length of the cached results set to avoid
multiple SELECT COUNT(*) calls.

create(**kwargs)
Returns the result of calling create(...) on the first component queryset. Documentation for create:

Creates a new object with the given kwargs, saving it to the database and returning the created object.

dates(field_name, kind, order=’ASC’)
Raises NotImplementedError. Documentation for dates:

Returns a list of date objects representing all available dates for the given field_name, scoped to ‘kind’.

datetimes(field_name, kind, order=’ASC’, tzinfo=None)
Raises NotImplementedError. Documentation for datetimes:

Returns a list of datetime objects representing all available datetimes for the given field_name, scoped to
‘kind’.

db
Return the database that will be used if this query is executed now

defer(*fields)
Returns the a new delayed queryset with defer(...) having been called on each of the component
querysets.: Documentation for defer:

Defers the loading of data for certain fields until they are accessed. The set of fields to defer is added to
any existing set of deferred fields. The only exception to this is if None is passed in as the only parameter,
in which case all deferrals are removed (None acts as a reset option).

delete
Returns the output of delete(...) after having applied the delayed operation. Documentation for
delete:

Deletes the records in the current QuerySet.

8 Chapter 4. Reference

Django Delayed Union, Release 0.1.5

difference(*other_qs)
Raises NotImplementedError.

distinct(*field_names)
Raises NotImplementedError. Documentation for distinct:

Returns a new QuerySet instance that will select only distinct results.

earliest(field_name=None)
Returns the output of earliest(...) after having applied the delayed operation.

exclude(*args, **kwargs)
Returns the a new delayed queryset with exclude(...) having been called on each of the component
querysets.: Documentation for exclude:

Returns a new QuerySet instance with NOT (args) ANDed to the existing set.

exists
Returns the output of exists(...) after having applied the delayed operation.

extra(select=None, where=None, params=None, tables=None, order_by=None, se-
lect_params=None)

Returns the a new delayed queryset with extra(...) having been called on each of the component
querysets.: Documentation for extra:

Adds extra SQL fragments to the query.

filter(*args, **kwargs)
Returns the a new delayed queryset with filter(...) having been called on each of the component
querysets.: Documentation for filter:

Returns a new QuerySet instance with the args ANDed to the existing set.

first
Returns the output of first(...) after having applied the delayed operation. Documentation for first:

Returns the first object of a query, returns None if no match is found.

get(*args, **kwargs)
Performs the query and returns a single object matching the given keyword arguments.

Note: We cannot use PostApplyMethod for this since that does additional filtering which does not
work with querysets that have been “unioned” for example.

get_or_create(defaults=None, **kwargs)
Raises NotImplementedError. Documentation for get_or_create:

Looks up an object with the given kwargs, creating one if necessary. Returns a tuple of (object, created),
where created is a boolean specifying whether an object was created.

in_bulk(id_list=None)
Returns a dictionary mapping each of the given IDs to the object with that ID. If id_list isn’t provided, the
entire DelayedQuerySet is evaluated.

intersection(*other_qs)
Raises NotImplementedError.

iterator
Returns the output of iterator(...) after having applied the delayed operation. Documentation for
iterator:

An iterator over the results from applying this QuerySet to the database.

4.1. django_delayed_union 9

Django Delayed Union, Release 0.1.5

last
Returns the output of last(...) after having applied the delayed operation. Documentation for last:

Returns the last object of a query, returns None if no match is found.

latest(field_name=None)
Returns the output of latest(...) after having applied the delayed operation.

model
Returns the model class for the DelayedQuerySet.

none
Returns the a new delayed queryset with none(...) having been called on each of the component
querysets.: Documentation for none:

Returns an empty QuerySet.

only(*fields)
Returns the a new delayed queryset with only(...) having been called on each of the component
querysets.: Documentation for only:

Essentially, the opposite of defer. Only the fields passed into this method and that are not already specified
as deferred are loaded immediately when the queryset is evaluated.

order_by(*field_names)
Returns a new DelayedQuerySet` instance with the ordering changed.

Note: We need to have a custom implementation for this because we want to change the ordering of the
final queryset, not just the ordering within each component queryset.

ordered
Returns True if the DelayedQuerySet is ordered – i.e. has an order_by() clause.

Return type bool

prefetch_related(*lookups)
Returns the a new delayed queryset with prefetch_related(...) having been called on the first
component queryset, while the rest remain unchanged. Documentation for prefetch_related:

Returns a new QuerySet instance that will prefetch the specified Many-To-One and Many-To-Many related
objects when the QuerySet is evaluated.

When prefetch_related() is called more than once, the list of lookups to prefetch is appended to. If
prefetch_related(None) is called, the list is cleared.

query

raw(raw_query, params=None, translations=None, using=None)
Returns the output of raw(...) after having applied the delayed operation.

reverse()
Reverses the ordering of the DelayedQuerySet.

Note: We need to have a custom implementation for this because we want to reverse the ordering of the
final queryset, not just the ordering within each component queryset.

select_for_update(nowait=False, skip_locked=False)
Raises NotImplementedError. Documentation for select_for_update:

Returns a new QuerySet instance that will select objects with a FOR UPDATE lock.

10 Chapter 4. Reference

Django Delayed Union, Release 0.1.5

select_related(*fields)
Returns the a new delayed queryset with select_related(...) having been called on each of the
component querysets.: Documentation for select_related:

Returns a new QuerySet instance that will select related objects.

If fields are specified, they must be ForeignKey fields and only those related objects are included in the
selection.

If select_related(None) is called, the list is cleared.

union(*other_qs, **kwargs)
Raises NotImplementedError.

update(**kwargs)
Raises NotImplementedError. Documentation for update:

Updates all elements in the current QuerySet, setting all the given fields to the appropriate values.

update_or_create(defaults=None, **kwargs)
Raises NotImplementedError. Documentation for update_or_create:

Looks up an object with the given kwargs, updating one with defaults if it exists, otherwise creates a new
one. Returns a tuple (object, created), where created is a boolean specifying whether an object was created.

using(alias)
Returns the a new delayed queryset with using(...) having been called on each of the component
querysets.: Documentation for using:

Selects which database this QuerySet should execute its query against.

values(*fields, **expressions)
Returns the a new delayed queryset with values(...) having been called on each of the component
querysets.:

values_list(*fields, **kwargs)
Returns the a new delayed queryset with values_list(...) having been called on each of the com-
ponent querysets.:

class django_delayed_union.DelayedUnionQuerySet(*querysets, **kwargs)
Bases: django_delayed_union.base.DelayedQuerySet

distinct()
Returns a new DelayedUnionQuerySet instance that will select only distinct results.

update(**kwargs)
Updates all elements in the component querysets, setting all the given fields to the appropriate values.
Returns the total number of (not-necessarily distinct) rows updated.

class django_delayed_union.DelayedIntersectionQuerySet(*querysets)
Bases: django_delayed_union.base.DelayedQuerySet

distinct()
Returns a new DelayedIntersectionQuerySet instance that will select only distinct results.

class django_delayed_union.DelayedDifferenceQuerySet(*querysets)
Bases: django_delayed_union.base.DelayedQuerySet

distinct()
Returns a new DelayedDifferenceQuerySet instance that will select only distinct results.

4.1. django_delayed_union 11

Django Delayed Union, Release 0.1.5

12 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.2 Documentation improvements

We could always use more documentation, whether as part of the official docs, in docstrings, or even on the web in
blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/roverdotcom/django-delayed-union/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Code contributions are always welcome :)

13

https://github.com/roverdotcom/django-delayed-union/issues
https://github.com/roverdotcom/django-delayed-union/issues

Django Delayed Union, Release 0.1.5

5.4 Development

To set up django-delayed-union for local development:

1. Fork django-delayed-union (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/django-delayed-union.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

5.4.2 Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

14 Chapter 5. Contributing

https://github.com/roverdotcom/django-delayed-union
http://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/roverdotcom/django-delayed-union/pull_requests

CHAPTER 6

Authors

• Mike Hansen - https://www.rover.com/

15

https://www.rover.com/

Django Delayed Union, Release 0.1.5

16 Chapter 6. Authors

CHAPTER 7

Changelog

7.1 0.1.4 (2019-10-19)

• Added query property to delayed querysets.

• Fixed bug with count() and select_related() in MySQL

• Added tests for Django 3.0

7.2 0.1.3 (2019-04-24)

• Added tests for Django 2.2

7.3 0.1.2 (2018-12-14)

• Added support for nested unions and intersections

7.4 0.1.1 (2018-07-16)

• Cached the queryset generated after applying the delayed operation.

7.5 0.1.0 (2018-03-14)

• First release on PyPI.

17

Django Delayed Union, Release 0.1.5

18 Chapter 7. Changelog

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

19

Django Delayed Union, Release 0.1.5

20 Chapter 8. Indices and tables

Python Module Index

d
django_delayed_union, 11
django_delayed_union.base, 7

21

Django Delayed Union, Release 0.1.5

22 Python Module Index

Index

A
aggregate (django_delayed_union.base.DelayedQuerySet

attribute), 7
all (django_delayed_union.base.DelayedQuerySet at-

tribute), 7
annotate (django_delayed_union.base.DelayedQuerySet

attribute), 7
as_manager (django_delayed_union.base.DelayedQuerySet

attribute), 7

B
bulk_create (django_delayed_union.base.DelayedQuerySet

attribute), 8

C
complex_filter (django_delayed_union.base.DelayedQuerySet

attribute), 8
count (django_delayed_union.base.DelayedQuerySet

attribute), 8
create (django_delayed_union.base.DelayedQuerySet

attribute), 8

D
dates (django_delayed_union.base.DelayedQuerySet

attribute), 8
datetimes (django_delayed_union.base.DelayedQuerySet

attribute), 8
db (django_delayed_union.base.DelayedQuerySet

attribute), 8
defer (django_delayed_union.base.DelayedQuerySet

attribute), 8
DelayedDifferenceQuerySet (class in

django_delayed_union), 11
DelayedIntersectionQuerySet (class in

django_delayed_union), 11
DelayedQuerySet (class in

django_delayed_union.base), 7
DelayedUnionQuerySet (class in

django_delayed_union), 11

delete (django_delayed_union.base.DelayedQuerySet
attribute), 8

difference (django_delayed_union.base.DelayedQuerySet
attribute), 8

distinct (django_delayed_union.base.DelayedQuerySet
attribute), 9

distinct() (django_delayed_union.DelayedDifferenceQuerySet
method), 11

distinct() (django_delayed_union.DelayedIntersectionQuerySet
method), 11

distinct() (django_delayed_union.DelayedUnionQuerySet
method), 11

django_delayed_union (module), 11
django_delayed_union.base (module), 7

E
earliest (django_delayed_union.base.DelayedQuerySet

attribute), 9
exclude (django_delayed_union.base.DelayedQuerySet

attribute), 9
exists (django_delayed_union.base.DelayedQuerySet

attribute), 9
extra (django_delayed_union.base.DelayedQuerySet

attribute), 9

F
filter (django_delayed_union.base.DelayedQuerySet

attribute), 9
first (django_delayed_union.base.DelayedQuerySet

attribute), 9

G
get() (django_delayed_union.base.DelayedQuerySet

method), 9
get_or_create (django_delayed_union.base.DelayedQuerySet

attribute), 9

I
in_bulk() (django_delayed_union.base.DelayedQuerySet

method), 9

23

Django Delayed Union, Release 0.1.5

intersection (django_delayed_union.base.DelayedQuerySet
attribute), 9

iterator (django_delayed_union.base.DelayedQuerySet
attribute), 9

L
last (django_delayed_union.base.DelayedQuerySet at-

tribute), 9
latest (django_delayed_union.base.DelayedQuerySet

attribute), 10

M
model (django_delayed_union.base.DelayedQuerySet

attribute), 10

N
none (django_delayed_union.base.DelayedQuerySet at-

tribute), 10

O
only (django_delayed_union.base.DelayedQuerySet at-

tribute), 10
order_by() (django_delayed_union.base.DelayedQuerySet

method), 10
ordered (django_delayed_union.base.DelayedQuerySet

attribute), 10

P
prefetch_related (django_delayed_union.base.DelayedQuerySet

attribute), 10

Q
query (django_delayed_union.base.DelayedQuerySet

attribute), 10

R
raw (django_delayed_union.base.DelayedQuerySet at-

tribute), 10
reverse() (django_delayed_union.base.DelayedQuerySet

method), 10

S
select_for_update

(django_delayed_union.base.DelayedQuerySet
attribute), 10

select_related (django_delayed_union.base.DelayedQuerySet
attribute), 10

U
union (django_delayed_union.base.DelayedQuerySet

attribute), 11
update (django_delayed_union.base.DelayedQuerySet

attribute), 11

update() (django_delayed_union.DelayedUnionQuerySet
method), 11

update_or_create (django_delayed_union.base.DelayedQuerySet
attribute), 11

using (django_delayed_union.base.DelayedQuerySet
attribute), 11

V
values (django_delayed_union.base.DelayedQuerySet

attribute), 11
values_list (django_delayed_union.base.DelayedQuerySet

attribute), 11

24 Index

	Overview
	Installation
	Documentation
	Development

	Installation
	Usage
	Custom QuerySet methods

	Reference
	django_delayed_union

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	0.1.4 (2019-10-19)
	0.1.3 (2019-04-24)
	0.1.2 (2018-12-14)
	0.1.1 (2018-07-16)
	0.1.0 (2018-03-14)

	Indices and tables
	Python Module Index
	Index

