

Contents

	Overview
	Installation

	Documentation

	Development

	Installation

	Usage
	Custom QuerySet methods

	Reference
	django_delayed_union

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.4 (2019-10-19)

	0.1.3 (2019-04-24)

	0.1.2 (2018-12-14)

	0.1.1 (2018-07-16)

	0.1.0 (2018-03-14)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/django-delayed-union]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/roverdotcom/django-delayed-union]

[image: Coverage Status] [https://codecov.io/github/roverdotcom/django-delayed-union]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/django-delayed-union] [image: PyPI Wheel] [https://pypi.python.org/pypi/django-delayed-union] [image: Django versions] [https://pypi.python.org/pypi/django-delayed-union] [image: Supported versions] [https://pypi.python.org/pypi/django-delayed-union]

[image: Commits since latest release] [https://github.com/roverdotcom/django-delayed-union/compare/v0.1.5...master]

django-delayed-union is library designed to workaround some
drawbacks with Django’s union, intersection, and difference
operations. In particular, once one of these operations is performed,
certain methods on the queryset will silently not work:

>>> qs = User.objects.filter(id=1)
>>> unioned_qs = qs.union(qs)
>>> should_be_empty_qs = unioned_qs.exclude(id=1)
>>> user, = list(should_be_empty_qs); user.id
1

In order to work around this, django-delayed-union provides
wrappers around a collection of querysets. These wrappers implement a
similar interface to QuerySet, and delay performing the union,
intersection, or difference operations until they are needed:

>>> from django_delayed_union import DelayedUnionQuerySet
>>> qs = User.objects.filter(id=1)
>>> unioned_qs = DelayedUnionQuerySet(qs, qs)
>>> empty_qs = unioned_qs.exclude(id=1)
>>> list(empty_qs)
[]

Operations which would typically return a new QuerySet instead
return a new DelayedQuerySet with the operation applied to its
collection of querysets.

One example of where this code has been useful with is when the the
MySQL query planner has chosen an inefficient query plan for the
queryset of a Django REST Framework [https://github.com/foo/] view
which used an OR condition. By using DelayedUnionQuerySet,
subclasses could perform additional filters on the queryset while
still maintaining the efficient query plan.

	Free software: BSD 3-Clause License

Installation

pip install django-delayed-union

Documentation

https://django-delayed-union.readthedocs.io/

Development

To run the all tests run:

tox

Installation

At the command line:

pip install django-delayed-union

Usage

To use Django Delayed Union in a project, import the wrapper corresponding
to the operation needed:

from django_delayed_union import DelayedUnionQuerySet
from django_delayed_union import DelayedIntersectionQuerySet
from django_delayed_union import DelayedDifferenceQuerySet

Then, you use them where you would use Django’s union, intersection, and
difference methods:

>>> qs0.union(qs1, qs2)
>>> DelayedUnionQuerySet(qs0, qs1, qs2)

>>> qs0.union(qs1, qs2, all=True)
>>> DelayedUnionQuerySet(qs0, qs1, qs2, all=True)

>>> qs0.intersection(qs1)
>>> DelayedIntersectionQuerySet(qs0, qs1)

>>> qs0.difference(qs1)
>>> DelayedDifferenceQuerySet(qs0, qs1)

These wrappers implement the same public interface as Django’s QuerySet
so they should be able to be used by code which expects a QuerySet.

Note

DelayedQuerySet does not subclass QuerySet so any code
which checks for whether or not an object is an instance of
QuerySet will not work with these wrappers.

Note

If certain methods are unimplemented or will not work, they will
raise a NotImplementedError as opposed to silently not working.

Custom QuerySet methods

Currently, the wrappers do not handle any custom methods that may have
been added to the component querysets. For example, if qs0 and
qs1 were instances of a subclass of QuerySet that had an
active() method, then the following would not work:

>>> DelayedUnionQuerySet(q0, qs1).active()
Traceback (most recent call last)
 ...
AttributeError

Where this functionality is needed, it is straightforward to make a subclass
of DelayedUnionQuerySet using which has this behavior:

from django_delayed_union.base import PassthroughMethod

class MyDelayedUnionQuerySet(DelayedUnionQuerySet):
 active = PassthroughMethod()

>>> MyDelayedUnionQuerySet(qs0, qs1).active()

Check out the other subclasses of
django_delayed_union.base.DelayedQuerySetDescriptor if you need
the resulting method to behave differently than PassthroughMethod.

Reference

	django_delayed_union

django_delayed_union

	
class django_delayed_union.base.DelayedQuerySet(*querysets, **kwargs)

	A class used to work around some of the issues with Django’s built-in
support for set operations with querysets (such as UNION).
The primary issue is that after `.union() call is made any subsequent
filtering will silently fail. This class works around that issue by
maintaing all of the individual querysets and not applying an operation
like .union() until it’s needed.

For example, suppose we have qs = DelayedUnionQuerySet(qs0, qs1)`,
then running qs = qs.filter(id=42) will be equivalent to doing
qs = DelayedUnionQuerySet(qs0.filter(id=42), qs1.filter(id=42)). Then,
when we actually need to evaluate the queryset say by doing
obj = qs.first(), it will return qs0.union(qs1).first() behind
the scenes.

Subclasses need to implement the _apply_operation(), which performs
the operation such as .union() that is being delayed.

	
aggregate(*args, **kwargs)

	Raises NotImplementedError. Documentation for aggregate:

Returns a dictionary containing the calculations (aggregation)
over the current queryset

If args is present the expression is passed as a kwarg using
the Aggregate object’s default alias.

	
all

	Returns the a new delayed queryset with all(...) having been called
on each of the component querysets.: Documentation for all:

Returns a new QuerySet that is a copy of the current one. This allows a
QuerySet to proxy for a model manager in some cases.

	
annotate(*args, **kwargs)

	Returns the a new delayed queryset with annotate(...) having been called
on each of the component querysets.: Documentation for annotate:

Return a query set in which the returned objects have been annotated
with extra data or aggregations.

	
as_manager(cls)

	Returns the a new delayed queryset with as_manager(...) having been
called on the first component queryset, while the rest remain unchanged.

	
bulk_create(objs, batch_size=None)

	Returns the result of calling bulk_create(...) on the first component
queryset. Documentation for bulk_create:

Inserts each of the instances into the database. This does not call
save() on each of the instances, does not send any pre/post save
signals, and does not set the primary key attribute if it is an
autoincrement field (except if features.can_return_ids_from_bulk_insert=True).
Multi-table models are not supported.

	
complex_filter(filter_obj)

	Returns the a new delayed queryset with complex_filter(...) having been called
on each of the component querysets.: Documentation for complex_filter:

Returns a new QuerySet instance with filter_obj added to the filters.

filter_obj can be a Q object (or anything with an add_to_query()
method) or a dictionary of keyword lookup arguments.

This exists to support framework features such as ‘limit_choices_to’,
and usually it will be more natural to use other methods.

	
count

	Returns the output of count(...) after having applied the delayed
operation. Documentation for count:

Performs a SELECT COUNT() and returns the number of records as an
integer.

If the QuerySet is already fully cached this simply returns the length
of the cached results set to avoid multiple SELECT COUNT(*) calls.

	
create(**kwargs)

	Returns the result of calling create(...) on the first component
queryset. Documentation for create:

Creates a new object with the given kwargs, saving it to the database
and returning the created object.

	
dates(field_name, kind, order='ASC')

	Raises NotImplementedError. Documentation for dates:

Returns a list of date objects representing all available dates for
the given field_name, scoped to ‘kind’.

	
datetimes(field_name, kind, order='ASC', tzinfo=None)

	Raises NotImplementedError. Documentation for datetimes:

Returns a list of datetime objects representing all available
datetimes for the given field_name, scoped to ‘kind’.

	
db

	Return the database that will be used if this query is executed now

	
defer(*fields)

	Returns the a new delayed queryset with defer(...) having been called
on each of the component querysets.: Documentation for defer:

Defers the loading of data for certain fields until they are accessed.
The set of fields to defer is added to any existing set of deferred
fields. The only exception to this is if None is passed in as the only
parameter, in which case all deferrals are removed (None acts as a
reset option).

	
delete

	Returns the output of delete(...) after having applied the delayed
operation. Documentation for delete:

Deletes the records in the current QuerySet.

	
difference(*other_qs)

	Raises NotImplementedError.

	
distinct(*field_names)

	Raises NotImplementedError. Documentation for distinct:

Returns a new QuerySet instance that will select only distinct results.

	
earliest(field_name=None)

	Returns the output of earliest(...) after having applied the delayed
operation.

	
exclude(*args, **kwargs)

	Returns the a new delayed queryset with exclude(...) having been called
on each of the component querysets.: Documentation for exclude:

Returns a new QuerySet instance with NOT (args) ANDed to the existing
set.

	
exists

	Returns the output of exists(...) after having applied the delayed
operation.

	
extra(select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

	Returns the a new delayed queryset with extra(...) having been called
on each of the component querysets.: Documentation for extra:

Adds extra SQL fragments to the query.

	
filter(*args, **kwargs)

	Returns the a new delayed queryset with filter(...) having been called
on each of the component querysets.: Documentation for filter:

Returns a new QuerySet instance with the args ANDed to the existing
set.

	
first

	Returns the output of first(...) after having applied the delayed
operation. Documentation for first:

Returns the first object of a query, returns None if no match is found.

	
get(*args, **kwargs)

	Performs the query and returns a single object matching the given
keyword arguments.

Note

We cannot use PostApplyMethod for this since that does
additional filtering which does not work with querysets that have
been “unioned” for example.

	
get_or_create(defaults=None, **kwargs)

	Raises NotImplementedError. Documentation for get_or_create:

Looks up an object with the given kwargs, creating one if necessary.
Returns a tuple of (object, created), where created is a boolean
specifying whether an object was created.

	
in_bulk(id_list=None)

	Returns a dictionary mapping each of the given IDs to the object with
that ID. If id_list isn’t provided, the entire
DelayedQuerySet is evaluated.

	
intersection(*other_qs)

	Raises NotImplementedError.

	
iterator

	Returns the output of iterator(...) after having applied the delayed
operation. Documentation for iterator:

An iterator over the results from applying this QuerySet to the
database.

	
last

	Returns the output of last(...) after having applied the delayed
operation. Documentation for last:

Returns the last object of a query, returns None if no match is found.

	
latest(field_name=None)

	Returns the output of latest(...) after having applied the delayed
operation.

	
model

	Returns the model class for the DelayedQuerySet.

	
none

	Returns the a new delayed queryset with none(...) having been called
on each of the component querysets.: Documentation for none:

Returns an empty QuerySet.

	
only(*fields)

	Returns the a new delayed queryset with only(...) having been called
on each of the component querysets.: Documentation for only:

Essentially, the opposite of defer. Only the fields passed into this
method and that are not already specified as deferred are loaded
immediately when the queryset is evaluated.

	
order_by(*field_names)

	Returns a new DelayedQuerySet` instance with the ordering
changed.

Note

We need to have a custom implementation for this because we
want to change the ordering of the final queryset, not just
the ordering within each component queryset.

	
ordered

	Returns True if the DelayedQuerySet is ordered – i.e.
has an order_by() clause.

	Return type

	bool

	
prefetch_related(*lookups)

	Returns the a new delayed queryset with prefetch_related(...) having been
called on the first component queryset, while the rest remain unchanged. Documentation for prefetch_related:

Returns a new QuerySet instance that will prefetch the specified
Many-To-One and Many-To-Many related objects when the QuerySet is
evaluated.

When prefetch_related() is called more than once, the list of lookups to
prefetch is appended to. If prefetch_related(None) is called, the list
is cleared.

	
query

	

	
raw(raw_query, params=None, translations=None, using=None)

	Returns the output of raw(...) after having applied the delayed
operation.

	
reverse()

	Reverses the ordering of the DelayedQuerySet.

Note

We need to have a custom implementation for this because we
want to reverse the ordering of the final queryset, not just
the ordering within each component queryset.

	
select_for_update(nowait=False, skip_locked=False)

	Raises NotImplementedError. Documentation for select_for_update:

Returns a new QuerySet instance that will select objects with a
FOR UPDATE lock.

	
select_related(*fields)

	Returns the a new delayed queryset with select_related(...) having been called
on each of the component querysets.: Documentation for select_related:

Returns a new QuerySet instance that will select related objects.

If fields are specified, they must be ForeignKey fields and only those
related objects are included in the selection.

If select_related(None) is called, the list is cleared.

	
union(*other_qs, **kwargs)

	Raises NotImplementedError.

	
update(**kwargs)

	Raises NotImplementedError. Documentation for update:

Updates all elements in the current QuerySet, setting all the given
fields to the appropriate values.

	
update_or_create(defaults=None, **kwargs)

	Raises NotImplementedError. Documentation for update_or_create:

Looks up an object with the given kwargs, updating one with defaults
if it exists, otherwise creates a new one.
Returns a tuple (object, created), where created is a boolean
specifying whether an object was created.

	
using(alias)

	Returns the a new delayed queryset with using(...) having been called
on each of the component querysets.: Documentation for using:

Selects which database this QuerySet should execute its query against.

	
values(*fields, **expressions)

	Returns the a new delayed queryset with values(...) having been called
on each of the component querysets.:

	
values_list(*fields, **kwargs)

	Returns the a new delayed queryset with values_list(...) having been called
on each of the component querysets.:

	
class django_delayed_union.DelayedUnionQuerySet(*querysets, **kwargs)

	Bases: django_delayed_union.base.DelayedQuerySet

	
distinct()

	Returns a new DelayedUnionQuerySet instance that will
select only distinct results.

	
update(**kwargs)

	Updates all elements in the component querysets, setting all the given
fields to the appropriate values. Returns the total number of
(not-necessarily distinct) rows updated.

	
class django_delayed_union.DelayedIntersectionQuerySet(*querysets)

	Bases: django_delayed_union.base.DelayedQuerySet

	
distinct()

	Returns a new DelayedIntersectionQuerySet instance that will
select only distinct results.

	
class django_delayed_union.DelayedDifferenceQuerySet(*querysets)

	Bases: django_delayed_union.base.DelayedQuerySet

	
distinct()

	Returns a new DelayedDifferenceQuerySet instance that will
select only distinct results.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/roverdotcom/django-delayed-union/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

We could always use more documentation, whether as part of the
official docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/roverdotcom/django-delayed-union/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Code contributions are always welcome :)

Development

To set up django-delayed-union for local development:

	Fork django-delayed-union [https://github.com/roverdotcom/django-delayed-union]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/django-delayed-union.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/roverdotcom/django-delayed-union/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Mike Hansen - https://www.rover.com/

Changelog

0.1.4 (2019-10-19)

	Added query property to delayed querysets.

	Fixed bug with count() and select_related() in MySQL

	Added tests for Django 3.0

0.1.3 (2019-04-24)

	Added tests for Django 2.2

0.1.2 (2018-12-14)

	Added support for nested unions and intersections

0.1.1 (2018-07-16)

	Cached the queryset generated after applying the delayed operation.

0.1.0 (2018-03-14)

	First release on PyPI.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_delayed_union	

 	
 	
 django_delayed_union.base	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | U
 | V

A

 	
 	aggregate (django_delayed_union.base.DelayedQuerySet attribute)

 	all (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	annotate (django_delayed_union.base.DelayedQuerySet attribute)

 	as_manager (django_delayed_union.base.DelayedQuerySet attribute)

B

 	
 	bulk_create (django_delayed_union.base.DelayedQuerySet attribute)

C

 	
 	complex_filter (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	count (django_delayed_union.base.DelayedQuerySet attribute)

 	create (django_delayed_union.base.DelayedQuerySet attribute)

D

 	
 	dates (django_delayed_union.base.DelayedQuerySet attribute)

 	datetimes (django_delayed_union.base.DelayedQuerySet attribute)

 	db (django_delayed_union.base.DelayedQuerySet attribute)

 	defer (django_delayed_union.base.DelayedQuerySet attribute)

 	DelayedDifferenceQuerySet (class in django_delayed_union)

 	DelayedIntersectionQuerySet (class in django_delayed_union)

 	DelayedQuerySet (class in django_delayed_union.base)

 	DelayedUnionQuerySet (class in django_delayed_union)

 	
 	delete (django_delayed_union.base.DelayedQuerySet attribute)

 	difference (django_delayed_union.base.DelayedQuerySet attribute)

 	distinct (django_delayed_union.base.DelayedQuerySet attribute)

 	distinct() (django_delayed_union.DelayedDifferenceQuerySet method)

 	(django_delayed_union.DelayedIntersectionQuerySet method)

 	(django_delayed_union.DelayedUnionQuerySet method)

 	django_delayed_union (module)

 	django_delayed_union.base (module)

E

 	
 	earliest (django_delayed_union.base.DelayedQuerySet attribute)

 	exclude (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	exists (django_delayed_union.base.DelayedQuerySet attribute)

 	extra (django_delayed_union.base.DelayedQuerySet attribute)

F

 	
 	filter (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	first (django_delayed_union.base.DelayedQuerySet attribute)

G

 	
 	get() (django_delayed_union.base.DelayedQuerySet method)

 	
 	get_or_create (django_delayed_union.base.DelayedQuerySet attribute)

I

 	
 	in_bulk() (django_delayed_union.base.DelayedQuerySet method)

 	
 	intersection (django_delayed_union.base.DelayedQuerySet attribute)

 	iterator (django_delayed_union.base.DelayedQuerySet attribute)

L

 	
 	last (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	latest (django_delayed_union.base.DelayedQuerySet attribute)

M

 	
 	model (django_delayed_union.base.DelayedQuerySet attribute)

N

 	
 	none (django_delayed_union.base.DelayedQuerySet attribute)

O

 	
 	only (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	order_by() (django_delayed_union.base.DelayedQuerySet method)

 	ordered (django_delayed_union.base.DelayedQuerySet attribute)

P

 	
 	prefetch_related (django_delayed_union.base.DelayedQuerySet attribute)

Q

 	
 	query (django_delayed_union.base.DelayedQuerySet attribute)

R

 	
 	raw (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	reverse() (django_delayed_union.base.DelayedQuerySet method)

S

 	
 	select_for_update (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	select_related (django_delayed_union.base.DelayedQuerySet attribute)

U

 	
 	union (django_delayed_union.base.DelayedQuerySet attribute)

 	update (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	update() (django_delayed_union.DelayedUnionQuerySet method)

 	update_or_create (django_delayed_union.base.DelayedQuerySet attribute)

 	using (django_delayed_union.base.DelayedQuerySet attribute)

V

 	
 	values (django_delayed_union.base.DelayedQuerySet attribute)

 	
 	values_list (django_delayed_union.base.DelayedQuerySet attribute)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Usage

 		
 Custom QuerySet methods

 		
 Reference

 		
 django_delayed_union

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.1.4 (2019-10-19)

 		
 0.1.3 (2019-04-24)

 		
 0.1.2 (2018-12-14)

 		
 0.1.1 (2018-07-16)

 		
 0.1.0 (2018-03-14)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

